Robust Bayesian compressed sensing over finite fields: asymptotic performance analysis
نویسندگان
چکیده
This paper addresses the topic of robust Bayesian compressed sensing over finite fields. For stationary and ergodic sources, it provides asymptotic (with the size of the vector to estimate) necessary and sufficient conditions on the number of required measurements to achieve vanishing reconstruction error, in presence of sensing and communication noise. In all considered cases, the necessary and sufficient conditions asymptotically coincide. Conditions on the sparsity of the sensing matrix are established in presence of communication noise. Several previously published results are generalized and extended.
منابع مشابه
Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملNew Construction of Deterministic Compressed Sensing Matrices via Singular Linear Spaces over Finite Fields
As an emerging approach of signal processing, not only has compressed sensing (CS) successfully compressed and sampled signals with few measurements, but also has owned the capabilities of ensuring the exact recovery of signals. However, the above-mentioned properties are based on the (compressed) sensing matrices. Hence the construction of sensing matrices is the key problem. Compared with the...
متن کاملRobust Bayesian Compressed sensing
We consider the problem of robust compressed sensing whose objective is to recover a high-dimensional sparse signal from compressed measurements corrupted by outliers. A new sparse Bayesian learning method is developed for robust compressed sensing. The basic idea of the proposed method is to identify and remove the outliers from sparse signal recovery. To automatically identify the outliers, w...
متن کاملOn the Compressed Measurements over Finite Fields: Sparse or Dense Sampling
We consider compressed sampling over finite fields and investigate the number of compressed measurements needed for successful L0 recovery. Our results are obtained while the sparseness of the sensing matrices as well as the size of the finite fields are varied. One of interesting conclusions includes that unless the signal is “ultra” sparse, the sensing matrices do not have to be dense. Keywor...
متن کاملCompressive Sensing Based Robust Signal Sampling
Signal processing methods have been changed substantially over the last several decades. Traditional sampling theorem of Shannon-Nyquist states that the sampling rate must be at least twice the maximum frequency presented in the signal; however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the band...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1401.4313 شماره
صفحات -
تاریخ انتشار 2014